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Justification Logic - Syntax

• Constants: ci , i ∈ N
• Variables: xi , i ∈ N
• Justification Terms :

• Constants and variables are terms
• If t1, t2 are terms, so are

(t1 · t2), (t1 + t2), (!t1)

• · is called application, + is called sum and ! proof checker.

• Sentence letters: pi , i ∈ N
• If p is a sentence letter, t is a term and φ1, φ2 are formulas,

then so are
p, ⊥, (φ1 → φ2), (t : φ1)
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J∅

• Finitely many schemes of classical propositional logic

• s : (φ→ ψ)→ (t : φ→ s · t : ψ) - Application Axiom

•
s : φ→ s + t : φ
s : φ→ t + s : φ

- Monotonicity Axiom

• Modus Ponens Rule :

φ→ ψ φ

ψ
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JD, JT, J4, JD4, LP

• t : φ→ φ - Factivity Axiom

• t : φ→!t : t : φ - Positive introspection

• t : ⊥ → ⊥ - Consistency Axiom

• JD∅ =J∅+ Consistency

• JT∅ =J∅+ Factivity

• J4∅ =J∅+ Positive introspection

• JD4∅ =J∅+ Consistency + Positive introspection

• LP∅ =J∅+ Factivity + Positive introspection
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Constant Specification

• A constant specification for a justification logic JL is any set

CS ⊂ {c : A | c is a constant, A an axiom of JL}

A c.s. is:

• axiomatically appropriate if each axiom is justified

• injective if every constant justifies at most one axiom

• schematic if every constant justifies a certain number of
axiom schemes

• schematically injective if it is schematic and every constant
justifies at most one scheme

• finite if it is a finite set

• almost schematic if it is the union of a schematic and a finite
c.s.
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More Inference Rules

R4CS

c : A ,

where c : A ∈ CS
R4!
CS

! · · ·!!c : · · ·!!c :!c : c : A ,

where c : A ∈ CS

JLCS = JL∅+ R4CS , if JL includes positive introspection and
JLCS = JL∅+ R4!

CS , otherwise.
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Fitting-Semantics (F-models)

(W ,R,V ,A), where

• W 6= ∅ is the set of worlds

• R is a binary relation on W (accessibility relation),

• V assigns a subset of W to each propositional variable, p, and

• A assigns a subset of W to each pair of a justification term
and a formula.
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Fitting-Semantics (F-models)
The accessibility relation conditions

R must be...

• Reflexive if the logic includes the factivity axiom.

• Transitive if the logic includes the positive introspection
axiom.

• Serial if the logic includes the consistency axiom.
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Fitting-Semantics (F-models)
The admissible evidence function conditions

• Application closure: for any formulas φ, ψ and justification
terms t, s,

A(s,F → G ) ∩ A(t,F ) ⊆ A(s · t,G ).

• Sum closure: for any formula φ and justification terms t, s,

A(t, φ) ∪ A(s, φ) ⊆ A(t + s, φ).

• Simplified CS-closure: for any axiom A, constant c , such that
c : A ∈ CS,

A(c ,A) = W ,

if positive introspection is included in the axioms, or
• CS-closure: for any axiom A, constant c , such that
c : A ∈ CS,

A(!! · · ·!︸ ︷︷ ︸
n+1

c , ! · · ·!︸︷︷︸
n

c · · · : c : A) = A(c ,A) = W ,

otherwise.
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Fitting-Semantics (F-models)
The admissible evidence function conditions

• Positive introspection closure: for any formula φ and
justification term t,

A(t, φ) ⊆ A(!t, t : φ),

if the logic includes positive introspection.

• Monotonicity: for any formula φ, justification term t and
a, b ∈W , if aRb and a ∈ A(t, φ), then b ∈ A(t, φ),
if the consistency axiom is included.
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Fitting-Semantics (F-models)
Truth is defined in the following way

Given a state a:

• M, a 6|= ⊥.

• If p is a propositional variable, then M, a |= p iff a ∈ V (p)

• If φ, ψ are formulas, then M, a |= φ→ ψ if and only if
M, a |= ψ, or M, a 6|= φ.

• If φ is a formula and t a term, then M, a |= t : φ if and only
if a ∈ A(t, φ) and for all b ∈W , if aRb, then M, b |= φ.

JCS , JDCS , JTCS , J4CS , JD4CS , LPCS are sound and complete
w.r.t. their F-models. For JDCS , JD4CS , CS must be axiomatically
appropriate.
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M(Mkrtychev) - models

J, JD, JT, J4, JD4, LP are also sound and complete with respect
to their M-models.

M-models are F-models of only one state, with one extra condition
in the case of JD and JD4:

Consistent Evidence Condition: A(t,⊥) = ∅
Since there is only one world, we may consider A(t, φ) = true, or
just A(t, φ) to be another way to say A(t, φ) = W . Similarly for
V .
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The ∗-calculi

∗-expressions are expressions of the form ∗(t, φ), where t is a
justification term and φ is a formula. On these expressions and
given some constant specification, CS, we can define the ∗-calculi.
The ∗CS-calculus:

Axioms: ∗(!! · · ·!!c , ! · · ·!!c : · · · :!c : c : A),
where c : A ∈ CS

∗(s, φ→ ψ) ∗(t, φ)

∗(s · t, ψ)

∗(t, φ)

∗(s + t, φ)

∗(s, φ)

∗(s + t, φ)
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The ∗-calculi

And the ∗!CS-calculus:

Axioms: ∗(c,A),
where c : A ∈ CS, or

∗(s, φ→ ψ) ∗(t, φ)

∗(s · t, ψ)

∗(t, φ)

∗(s + t, φ)

∗(s, φ)

∗(s + t, φ)

∗(t, φ)

∗(!t, t : φ)



Definitions Upper bounds An upper bound for JD4 End

The ∗-calculi and why are they of interest here

Theorem (Mkrtychev, 1997)

Let JL be one of the justification logics mentioned above. For a
set of ∗-expressions, B∗, define A : Tm × JL −→ {True,False}
s.t. for any term t and any formula φ,

A(t, φ) = true ⇐⇒ B∗ `∗CS ∗(t, φ).

Then, if there exists an admissible evidence function Aad s.t.
B∗ ⊆ {∗(t, φ)|Aad(t, φ) = true}, then A is a legitimate admissible
evidence function and for any term t and any formula φ,

A(t, φ) = true =⇒ Aad(t, φ) = true.

.
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The ∗-calculi and why are they of interest here

Theorem (Krupski 2003, Kuznets 2008)

Let CS be a schematic constant specification in NP. Then,

1. There exists a non-deterministic algorithm that runs in
polynomial time and determines, given a finite set S of
∗-expressions, a formula φ and a term t, whether

S `∗CS ∗(t, φ)

2. There exists a non-deterministic algorithm that runs in
polynomial time and determines, given a finite set S of
∗-expressions, a formula φ and a term t, whether

S `∗!CS ∗(t, φ)
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The Problem we are trying to solve

For justification logic JLCS and efficiently decidable constant
specification (CS ∈ P, or NP), given a formula φ, decide whether
JLCS ` φ or not.

Assumptions will be made on the properties of the constant
specification.
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How will upper bounds be established?
The cases of J, JT, J4, LP

• The compact character of M-models will be used.

• A tableau-like procedure will be used.

• M-models have two parts: a valuation and a possible evidence
function.

• The procedure will have two parts.
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Informally,

• Given a formula ψ, (non-determimistically) produce a branch
of a tableau, starting with F ψ. As is usually the case, the
branch will try to describe a countermodel of ψ.

• The branch will include not only formulas of the language, but
also ∗-expressions.

• A prefixed ∗-expression of the form T ∗ (t, φ) will correspond
to A(t, φ) = true in the model.

• We can then check whether the ∗-calculus produces a
negative ∗ expression from the positive ones in the tableau.
We know this check fails if and only if there is some legitimate
admissible evidence function that satisfies all positive
∗-expressions and no negative ones.
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Upper bounds for Justification Logics

Theorem (Kuznets, 2000)

JCS , JTCS , J4CS , LPCS ∈ Πp
2 , for CS decidable almost schematic.

Theorem (Kuznets 2008)

JDCS with a decidable, almost schematic and axiomatically
appropriate CS is in Πp

2 .

It is easier to show that the corresponding satisfiability problem for
these logics in in Σp

2 .
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The procedure used constructs non-deterministically a tableau
branch. The non-propositional rules are the following. The first
two are for logics JCS and J4CS . The following two are used for
JTCS and LPCS .

T s : ψ

T ∗ (s, ψ)

F s : ψ

F ∗ (s, ψ)

T s : ψ

T ψ
T ∗ (s, ψ)

F s : ψ

F ∗ (s, ψ) | F ψ

If the branch is closed, reject. If not, check if for some ∗-expression
produced, of the form F ∗ (t,R), X `∗CS ∗(t,R), where X is the
set of all positively prefixed ∗-expressions in the branch. If yes,
then reject. Otherwise, accept.
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Upper bounds for Justification Logics
The case of JD

The procedure for JDCS is similar, but with few changes necessary,
to account for the consistent evidence condition. New, numerical
prefixes will be used to represent different models: we must make
sure that the term-prefixed formulas are consistent - in other words
that the set {ψ|M |= t : ψ for some t} is satisfiable. Instead of
the tableau rules introduced above, the following ones are used:

n T s : ψ

n T ∗ (s, ψ)
n + 1 T ψ

n F s : ψ

n F ∗ (s, ψ)
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Upper bounds for Justification Logics
The case of JD - an observation

Although the procedure for JD as it was originally formalized is
based on M-models, the tableau construction seems to describe
something that looks like an F-model.
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The advantages and disadvantages of F- and M-models
when the evidence is consistent

• General F-models are not convenient. Having many states
does not help.

• This is why we consider M-models when studying the
complexity of justification logics.

• There is only one world and the conditions for the admissible
evidence are simple to check.

• Except in the case of JD and JD4. The consistent evidence
condition (¬A(t,⊥)) is hard to check.

• In the case of JD, this consistency is checked by trying to
satisfy the term-prefixed formulas with another model. The
end result is an F-model, where each state has only one
successor.

• Things look a little more complicated for JD4. However, a
simple constraint on the Fitting semantics of this logic will
provide a solution.
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JD4CS is sound and complete w.r.t. its F-models, for an
axiomatically appropriate constant specification. Additionally, it is
complete w.r.t. its F-models that satisfy the following property.

Strong Evidence Property: M, a |= t : F if and only if
a ∈ A(t,F )

It is useful for later on, given an F-type admissible evidence
function A and a world u to define Au to be the set
{(t, φ)|u ∈ A(t, φ)}.
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The case of JD4
Small models - but not too small

Proposition

A formula is JD4CS-satisfiable, where CS is axiomatically
appropriate, if and only if it is satisfiable by an F-model
M = (W ,R,V ,A) for JD4CS that additionally satisfies the
following properties:

• W has exactly two elements, a, b.

• R = {(a, b), (b, b)}

This proposition will be very convenient, as we have reduced the
number of worlds to just two, while avoiding the consistent
evidence condition.
The ’if’ direction is immediately apparent.
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Proof
The ’only if’ direction

Suppose φ is satisfied by M∗ = (W ,R,V ′,A′) at world a.

• There is an infinite sequence of elements of W , α = (ai )i∈N,
such that a0 = a, i < j ⇒ aiRaj & A′ai ⊆ A

′
aj

. (By Seriality,
Transitivity and Monotonicity)

• For any t : ψ, there is at most one j ∈ N,
M∗, aj 6|= t : ψ → ψ.

• Let b be a term of α, where M∗, b |= t : ψ → ψ for any t : ψ,
subformula of φ.

• M will be the model ({a, b}, {(a, b), (b, b)},V ,A), where
V ,A agree on a, b with V ′,A′.
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Proof
M, a |= φ

More precisely, M, a |= ψ iff M∗, a |= ψ, for any ψ, subformula of
φ (by induction on ψ).

• The propositional cases are easy.

• For any χ, subformula of φ, M∗, b |= χ iff M, b |= χ.

• So, assuming ψ = t : χ,

M∗, a |= ψ

m

a ∈ A′(t, χ) & M∗, b |= χ

m

a ∈ A(t, χ) & M, b |= χ

m

M, a |= ψ
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The upper bound for JD4

Using what we just proved, we can design an algorithm to establish
that:

Proposition

JD4CS is in Πp
2 , for any axiomatically appropriate, schematic and

efficiently decidable CS.
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The algorithm for the JD4 case

The algorithm is almost identical to what was used in all the other
cases. One difference is that the formulas now have T ,F and a, b
as prefixes. The non-propositional cases of the tableau procedure
are covered by the following rules.

a T s : G

a T ∗ (s,G )
b T s : G

,
b T s : G

b T ∗ (s,G )
b T G

,

a F s : G

a F ∗ (s,G ) | a F G
,

b F s : G

b F ∗ (s,G ) | b F G
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The algorithm for the JD4 case

If the branch is closed, reject. If not, let Xw be the set of all
positive w -prefixed ∗-expressions in the branch, for any w ∈ {a, b}.
Decide in nondeterministic polynomial time if for some
∗-expression produced, of the form w F ∗ (t,R), whether
Xw `∗CS ∗(t,R). If yes, then reject. Otherwise, accept.
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Lower bounds

Theorem (Milnikel 2007, Buss, Kuznets 2009)

JLCS is Πp
2-hard, for any JL ∈ { J, JD, JT, J4, JD4, LP } and any

axiomatically appropriate, and schematically injective CS.
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Finally,

Corollary (Milnikel 2007, Buss, Kuznets 2009)

JLCS is Πp
2-complete, for any JL ∈ { J, JD, JT, J4, JD4, LP } and

any axiomatically appropriate, schematically injective and
efficiently decidable CS.

Thank you.
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